+7 (351) 211-29-41 (городской)

+7 (351) 211-29-42 (факс)

← Назад

ИК.jpg

Принцип действия инфракрасного излучения

Инфракрасное излучение — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм). Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения.
Теплота, переданная при этом от нагретого тела к холодному, определяется по закону Стефана-Больцмана.

Применение инфракрасного излучения в промышленности

Инфракрасные лучи мало подвержены поглощению и рассеянию атмосферой, обладают большой проницаемостью. Эта особенность позволила применить их в различных областях промышленности и коммунального хозяйства. Инфракрасное излучение широко используется для термической обработки различных материалов (плавка, ковка, штамповка, закалка и отпуск, сушка, полимеризация, стимулирование химических и биологических процессов и т. д.). При обогреве промышленных помещений системами конвективного отопления теплый воздух поднимается в верхнюю часть помещения, создавая «тепловую подушку», которая перегревает верхнюю зону и значительно повышает теплопотери через строительные конструкции и вентиляцию. Рабочие места при этом часто требуют дополнительного обогрева. Использование лучистого отопления полностью исключает подобную ситуацию: комфортная температура создается на уровне 2,5 м от пола. Инфракрасный нагрев (техника инфракрасного нагрева) является одним, из прогрессивных способов термической обработки материалов и отопления (обогрева) помещений. Он дает большую производительность обработки материалов и высокое качество обрабатываемых изделий. Помимо электрических инфракрасных излучателей, применяют также газовые горелки инфракрасного излучения.
Применение излучающих газогорелочных устройств для технологических нужд позволяет в несколько раз сократить продолжительность технологических операций, улучшить качество обрабатываемого продукта, уменьшить количество потребляемой энергии, упростить и автоматизировать пуск-остановку агрегата и его регулирование. Однако следует иметь в виду, что для каждого вида продукции должен быть разработан свой особый технологический режим обработки инфракрасными лучами.
Например, современные инфракрасные сушильные установки на автомобильных и других заводах представляют собой туннели, на внутренних поверхностях которых установлены светлые или темные излучатели. Сушка окрашенного автомобиля в таком туннеле длится всего примерно 10 — 15 мин. Камера оборудована приточно-вытяжной вентиляцией. Кузова автомобилей омываются потоком нагретого воздуха. Такое сочетание конвективного и инфракрасного методов сушки значительно экономит тепловую энергию. Сушка эмали инфракрасными лучами происходит в камере при более низкой температуре внутреннего воздуха в ней, чем при конвективной сушке. Это позволяет избежать порчи приборов, которые могут быть смонтированы до момента сушки покрытия. Вместе с тем температура подложки достигает  требуемых значений. Метод инфракрасного нагрева незаменим для сушки последнего наружного слоя лака на собранных автомобилях. Инфракрасные лучи так быстро просушивают отделочный слой, что не успевают повредить не теплостойкие детали.

Конструкция газовой горелки инфракрасного излучения

При проектировании газовых инфракрасных излучателей, можно выбрать два конструктивных решения:

Металлические листы нагреваются снаружи маленькими газовыми факелами или посредством потока горячих отработанных газов. При этом листы в соответствии с их размерами, температурой и состоянием поверхности создают диффузное инфракрасное излучение. Стехиометрическую газовоздушную смесь пропускают либо через пористые или перфорированные пластины из керамического материала, либо через металлические сетки и сжигают ее на поверхности последних. В первом случае продукты сгорания не соприкасаются с материалами, нагреваемыми с помощью инфракрасного излучения в изолированном пространстве печи (например, в туннеле); при втором — горячие продукты сгорания поступают в сушильное пространство, то есть соприкасаются с нагреваемыми материалами. В зависимости от температуры насадка, различают «тёмные» и «светлые» горелки. При температуре насадка до 600 °C горелка считается «тёмной», свыше 600 °С — «светлой». Связано это с тем, что насадки «светлых» горелок светятся в видимом диапазоне, подобно лампам накаливания. Однако, большая часть излучения (порядка 60 %) по-прежнему представляет тепловое излучение. В «тёмных» горелках зачастую предусмотрен принудительный отвод продуктов сгорания. Продукты сгорания газа в «светлых» горелках выводятся системой общеобменной вентиляции, из верхней зоны помещения, реже — системами местной вентиляции. Основные элементы газовой горелки инфракрасного излучения: 1 — рефлектор; 2 — каналы в керамическом насадке; 3 — керамический насадок; 4 — распределительная коробка; 5 — смеситель-инжектор; 6 — форсунка.



← Назад